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Motivation
Reinforcement learning (RL) has been an effective method of autonomous racing, in that the AI agent can
learn by directly communicating with the environment without any prior data. However, traditional RL training
methods require significant time and resources. In particular, RL requires continuously experimenting with various
environments with real robots since the learning time takes more than five hours. Therefore, researchers came up
with a new method called sim‐to‐real transfer which trains the models in the various simulated environments and
then deploys those models in the real environment. This study investigates the effects of domain randomization
(DR) by augmenting the visual domain with various light conditions to enhance the reinforcement learning (RL)‐
based autonomous racing algorithm.

Research Questions
What is the improvement factor in sample efficiency, measured by the number of episodes
required for the AI robot to learn to drive on the track, achieved by implementing visual
domain randomizationwith camera sensor images for sim‐to‐real transfer in RL‐based end‐
to‐end autonomous racing, compared to standard RL training?

Experimental Settings
1. Autoencoder (AE) Training with Image Augmentation
This study augments the input images I collected from the AI robot’s camera sensor to implement visual domain
randomization (visual DR) with three distinct light conditions (C1, C2, C3).1
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2. Validation and Testing
Wevalidated each AEmodel in the randomly generated road in theDonkeyCar simulator. Themodel performance
was measured by the number of episodes to drive the full track. Then, we deployed the best‐performing model
in a real‐world Figure 8 track setting with JetRacer to validate its successful sim‐to‐real transfer.
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Markov Decision Process
During the sequential decision‐making interactions in RL‐based autonomous racing, the agent follows the Markov
decision process (MDP).2
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In this study, the MDP, denoted by < S,A, T, γ, R >3, is defined as:
• S : a set of states where si ∈ S is the encoded image x and Inertial Measurement Unit (IMU) sensor data.

•A : a set of actions where ai ∈ A is steering and throttle.

• T : a transition probability function
T (s, a, s′) = P (s′|s, a) ∈ (0, 1)

where s, s′ ∈ S are the current and new states and a ∈ A is the taken action, respectively.

• γ : a discount factor
γ ∈ (0, 1),

which controls how an agent regards future rewards. Low values of γ encourage the agent to maximize
short‐term rewards, whereas high values of γ cause it to maximize rewards over a longer time frame.

•R : a reward function
R(s, a) → r(s, a),

which is computed by the number of time steps the car stays on track, the change in linear acceleration, and the
change in angular velocity.

The MDP goal is to find the optimal policy π∗(a|s), which gives the highest expected sum of discounted rewards:

π∗ = argmaxπEπ

{
H−1∑
t=0

γtrt+1|s0 = s, a0 = a

}
for all states s ∈ S and actions a ∈ A, where rt = R(st, at) is the reward at time step t, and H is the maximum
number of steps in an episode.

Visual Domain Randomization
Each AE model gets an RGB image I as an input and outputs an encoded image x =< x0, x1, · · · , x31 >. Eight AE
models are constructed as follows:

Individual Condition Models Combined Condition Models
M1(I) : Baseline (No Condition) M5(I) : Light direction and intensity (C1 + C2)

M2(I) : Light direction condition (C1) M6(I) : Light direction and shadow (C1 + C3)

M3(I) : Light intensity condition (C2) M7(I) : Light intensity and shadow (C2 + C3)

M4(I) : Shadow condition (C3) M8(I) : All conditions combined (C1 + C2 + C3)

Below are the augmented image exemplars for each light condition:
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Results
1. Sample Efficiency in Simulated Environment and Real Environment
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Simulated Environment
• All individual condition models (M1,M2,M3,M4)
successfully learned to navigate the full track.

• If the combined condition models with light
intensity condition (C2) showed no improvement.

Real Environment
• The baseline model M1 did not show consistent
driving after it learned the full track.

•Our modelM6 consistently ran the full track even
after we randomly changed the light conditions.

2. Further Experiment Combined with Sensor/Action Domain Randomization
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Simulated Environment
•Our model M6 successfully learned to navigate
the full track even when combined with the
sensor/action DR model.

• Even though random factors were increased, it
showed better performance.

Real Environment
•Our model M6 remained robust with the
sensor/action DR model.

•Not only was the learning speed faster than
with a single M6 model, but it also successfully
completed the track after changing lighting
conditions.

Conclusion
This study investigates the effects of visual domain randomization (visual DR) by altering various light conditions
to enhance the reinforcement learning (RL)‐based autonomous racing algorithm. We trained eight autoencoder
models, each exposed to three distinct light conditions: light direction, light intensity, and shadow. We found
that visual DR can handle random light directions and shadows and perform successful sim‐to‐real transfer in the
model combined with those conditions. We also showed the robustness of our model by adding the sensor and
action domain randomization. This proposed approach contributes to more efficient training of RL algorithms for
autonomous racing, facilitating their practical application in real‐world scenarios.
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